

Synthesis and Structure of the New Organometallic Polyoxovanadates,

 $\{[(\eta\text{-C}_8\text{H}_{12})\text{Ir}]_2(\text{V}_4\text{O}_{12})\}^{2-}$ and $[(\eta\text{-C}_8\text{H}_{12})\text{Ir}(\text{V}_4\text{O}_{12})]^{3-}$ Victor W. DAY,^{†,††} Walter G. KLEMPERER, and Atsushi YAGASAKI^{†††}

Department of Chemistry, University of Illinois, Urbana, Illinois 61801, U.S.A.

[†]Crystalytics Company, Lincoln, Nebraska 68501, U.S.A.^{††}Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68558, U.S.A.

A 1,5-cyclooctadieneiridium complex of $\text{V}_4\text{O}_{12}^{4-}$, $\{[(\eta\text{-C}_8\text{H}_{12})\text{Ir}]_2(\text{V}_4\text{O}_{12})\}^{2-}$ is synthesized as a tetra-*n*-butylammonium salt by reacting $[(\eta\text{-C}_8\text{H}_{12})\text{IrCl}]_2$ with either $[(n\text{-C}_4\text{H}_9)_4\text{N}]_3\text{V}_5\text{O}_{14}$ or $[(n\text{-C}_4\text{H}_9)_4\text{N}]\text{VO}_3$ in CH_3CN . The reaction of $[(\eta\text{-C}_8\text{H}_{12})\text{IrCl}]_2$ with $[(n\text{-C}_4\text{H}_9)_4\text{N}]\text{VO}_3$ in CH_3CN also yields $[(\eta\text{-C}_8\text{H}_{12})\text{Ir}(\text{V}_4\text{O}_{12})]^{3-}$ as a tetra-*n*-butylammonium salt. X-Ray structural analyses revealed that the $[(\eta\text{-C}_8\text{H}_{12})\text{Ir}(\text{V}_4\text{O}_{12})]^{3-}$ and $\{[(\eta\text{-C}_8\text{H}_{12})\text{Ir}]_2(\text{V}_4\text{O}_{12})\}^{2-}$ anions contain a $\text{V}_4\text{O}_{12}^{4-}$ ring coordinated to one or two $(\eta\text{-C}_8\text{H}_{12})\text{Ir}^+$ moieties, respectively.

Recently, we¹⁾ and others²⁾ reported the synthesis of $[(\text{C}_5\text{Me}_5)_4\text{Rh}]_4(\text{V}_6\text{O}_{19})$, the first polyoxovanadate supported organometallic complex. Unfortunately, the synthetic methods employed require starting materials that are water-stable, and are thus not general routes to reactive organometallic polyoxovanadates. Here we report syntheses of two new complexes, $\{[(\eta\text{-C}_8\text{H}_{12})\text{Ir}]_2(\text{V}_4\text{O}_{12})\}^{2-}$ and $[(\eta\text{-C}_8\text{H}_{12})\text{Ir}(\text{V}_4\text{O}_{12})]^{3-}$, that are performed in nonaqueous media. This route should serve as a general synthetic pathway to reactive polyoxovanadate supported organometallic compounds.

Addition of a solution of $[(\text{C}_8\text{H}_{12})\text{IrCl}]_2$ ³⁾ (0.12 g, 0.18 mmol, in 2 cm³ CH_3CN) to a solution of $[(n\text{-C}_4\text{H}_9)_4\text{N}]_3\text{V}_5\text{O}_{14}$ ⁴⁾ (0.40 g, 0.33 mmol, in 2 cm³ CH_3CN) under dry nitrogen produced a brown

^{†††} Present address: Coordination Chemistry Laboratory, Institute for Molecular Science, Myodaiji, Okazaki 444.

precipitate. This material was collected by filtration, washed with 2x2 cm³ of diethyl ether, and dried under vacuum to yield 0.09 g of $[(n\text{-C}_4\text{H}_9)_4\text{N}]_2\{[(\eta\text{-C}_8\text{H}_{12})\text{Ir}]_2(\text{V}_4\text{O}_{12})\}$, **1** (0.061 mmol, 34% yield based on Ir).⁵⁾ The same compound was also obtained by adding a solution of $[(n\text{-C}_4\text{H}_9)_4\text{N}]\text{VO}_3$ ⁶⁾ (0.50 g, 1.5 mmol, in 3 cm³ CH₃CN) to a solution of $[(\text{C}_8\text{H}_{12})\text{IrCl}]_2$ (0.26 g, 0.39 mmol, in 5 cm³ CH₃CN), collecting the brown precipitate which formed by filtration, washing with 3x2 cm³ of diethyl ether, and drying under vacuum (0.32 g, 0.22 mmol, 59% yield based on V). Reaction of $[(\text{C}_8\text{H}_{12})\text{IrCl}]_2$ (0.042 g, 0.063 mmol) with $[(n\text{-C}_4\text{H}_9)_4\text{N}]\text{VO}_3$ (0.20 g, 0.59 mmol) in 2 cm³ CH₃CN under dry nitrogen for 30 min followed by addition of 20 cm³ of diethyl ether produced an orange precipitate. This material was collected by filtration, washed with 2x2 cm³ of diethyl ether, and dried under vacuum to yield 0.12 g of $[(n\text{-C}_4\text{H}_9)_4\text{N}]_3[(\eta\text{-C}_8\text{H}_{12})\text{Ir}(\text{V}_4\text{O}_{12})]$, **2** (0.084 mmol, 67% yield based on Ir).⁷⁾

X-Ray structural analyses of crystalline **1** and **2** revealed that the anions $\{[(\eta\text{-C}_8\text{H}_{12})\text{Ir}]_2(\text{V}_4\text{O}_{12})\}^{2-}$ and $[(\eta\text{-C}_8\text{H}_{12})\text{Ir}(\text{V}_4\text{O}_{12})]^{3-}$ have closely related structures, consisting of a V₄O₁₂⁴⁻ ring with two (**1**) or one (**2**) ($\eta\text{-C}_8\text{H}_{12}$)Ir⁺ moieties bonded to two terminal oxygens of adjacent vanadium atoms (see Figs. 1 and 2).⁸⁻¹⁰⁾ Although the anion of **1** possesses only rigorous crystallographic inversion symmetry, it approximates closely its maximum possible symmetry of C_{2h} . Average values of structurally equivalent bond lengths and angles of interest are as follows: V-O_A, 1.671(7, 2, 2, 2) Å;¹¹⁾ V-O_B, 1.794(7, 10, 10, 2) Å; V-O_D, 1.780(7, 13, 13, 2) Å; V-O_F, 1.614(8, 6, 6, 2) Å; Ir-O, 2.050(7, 1, 1, 2) Å; Ir-C, 2.104(13, 6, 11, 4) Å; V-O_D-V, 146.3(4)°; V-O_B-V, 125.3(5)°; O_B-V-O_D, 109.3(3, 2, 2, 2)°; V-O_A-Ir, 121.8(3, 12, 12, 2)°; O-Ir-O, 88.2(3)°. Although it has no rigorous crystallographic symmetry, the anion of **2** approximates C_s symmetry with the Ir atom and the oxygen atoms O_B and O_E lying on the pseudo mirror plane.

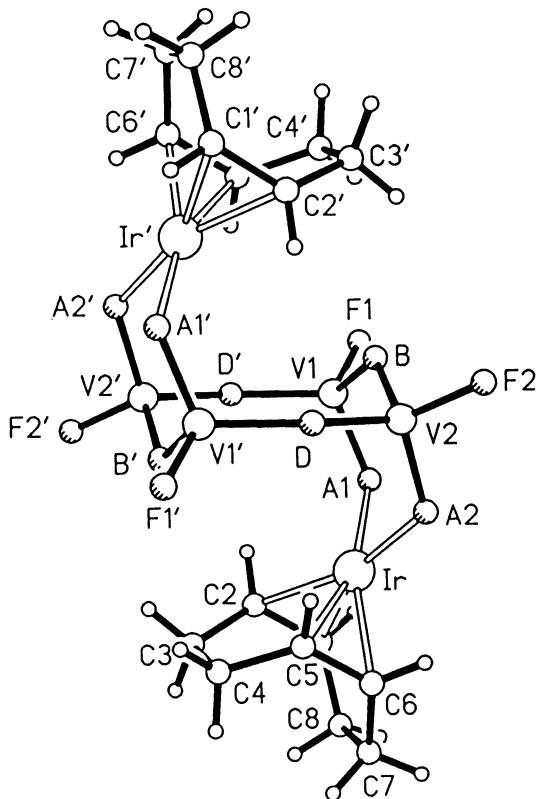


Fig. 1. Structure of the anion in **1**. Oxygen atoms are represented by shaded spheres and are labeled only by their subscripts. All other atoms are represented by open spheres and are labeled, except for hydrogen atoms, by their atomic symbol and, in the case of vanadium and carbon, their subscripts. Atoms with primed labels are related to atoms with unprimed labels by the crystallographic inversion center at (1/4, 1/4, 0) in the unit cell.

Average values of structurally equivalent bond length and angles of interest include the following: V-O_A, 1.68(1, 2, 2, 2) Å; V-O_B, 1.78(1, 1, 1, 2) Å; V_{1,2}-O_D, 1.75 (1, 2, 2, 2) Å; V_{3,4}-O_D, 1.82(1, 1, 1, 2) Å; V-O_E, 1.77(1, 2, 2, 2) Å; V-O_F, 1.60(1, 2, 2, 2) Å; V-O_G, 1.59(2, 2, 2, 2) Å; V-O_H, 1.56(2, 4, 4, 2) Å; Ir-O, 1.97(1, 4, 4, 2) Å; Ir-C, 2.20(2, 4, 9, 4) Å; Ir-O_A-V, 123(1, 3, 3, 2)°; V-O_B-V, 131(1)°; V-O_D-V, 141(1, 3, 3, 2)°; V-O_E-V, 155(1)°; O_B-V-O_D, 109(1, 2, 2, 2)°; O_D-V-O_E, 110(1, 2, 2, 2)°. Unlike the V₄O₁₂⁴⁻ ring in HV₄O₁₂³⁻, which has a bent structure,¹²⁾ the rings in the present anions assume a more planar configuration, each having all four V atoms nearly in the same plane. Coordination around Ir atoms in both complexes is square planar and is almost identical to that found in acetylacetone(1,5-cyclooctadiene)iridium, [(η-C₈H₁₂)Ir(acac)].¹³⁾

This research was supported by the National Science Foundation of the United States of America.

References

- 1) H. K. Chae, W. G. Klemperer, and V. W. Day, *Inorg. Chem.*, **28**, 1423 (1989).
- 2) Y. Hayashi, Y. Ozawa, and K. Isobe, *Chem. Lett.*, **1989**, 425.
- 3) R. H. Crabtree, J. M. Quirk, H. Felkin, and T. Fillebeen-Khan, *Synth. React. Inorg. Met.-Org. Chem.*, **12**, 407 (1982).
- 4) V. W. Day, W. G. Klemperer, and O. M. Yaghi, *J. Am. Chem. Soc.*, **111**, 4518 (1989).
- 5) Anal. Found: C, 38.87; H, 6.56; N, 2.06; Ir, 24.79; V, 13.98%. Calcd for C₄₈H₉₆N₂Ir₂V₄O₁₂: C, 38.92; H, 6.53; N, 1.89; Ir, 25.95; V, 13.75%. IR (Nujol, 1000 - 700 cm⁻¹): 969 (s), 922 (w), 901 (w), 882 (w), 845 (m), 796 (s), 726 (m). ¹H NMR (CD₃CN, 300 MHz): δ 3.8 (br, 8), 3.11 (m, 16), 2.4 (br, 8), 1.62 (m, 16), 1.45 (m, 8), 1.37 (m, 16), 0.97 (t, 24). ⁵¹V NMR (CD₃CN, 78.9 MHz): δ -446.
- 6) [(n-C₄H₉)₄N]VO₃ was prepared by adding V₂O₅ (4.0 g, 22 mmol) to 200 cm³ of aqueous 0.4 M [(n-C₄H₉)₄N]OH solution, stirring the solution for 18 h, filtering off a small amount of insoluble material, and then evaporating the solution to complete dryness under vacuum at 60 °C (14 g, 41 mmol, 93% yield based on V). The analytical sample was obtained by dissolving 1.0 g of the

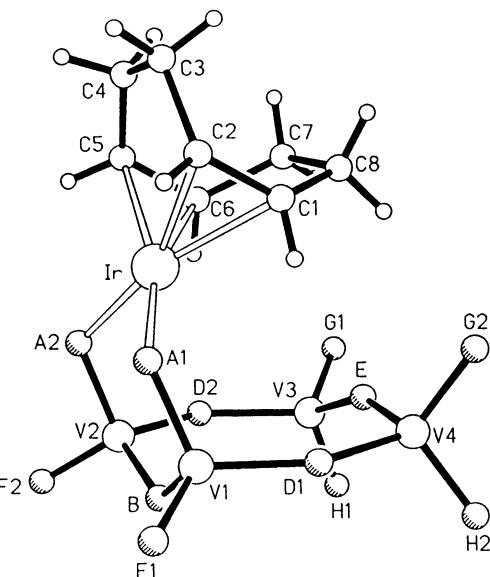


Fig. 2. Structure of the anion in 2. Oxygen atoms are represented by shaded spheres and are labeled only by their subscripts. All other atoms are represented by open spheres and are labeled, except for hydrogen atoms, by their atomic symbol and, in the case of vanadium and carbon, their subscripts.

crude material in 4 cm³ of acetone, precipitating by adding 8 cm³ of diethyl ether, washing the precipitate with 2x3 cm³ of diethyl ether, and drying under vacuum for 18 h (0.5 g, 50% yield). Anal. Found: C, 55.85; H, 10.72; N, 4.06; V, 14.67%. Calcd for C₁₆H₃₆NVO₃·0.1H₂O: C, 55.99; H, 10.63; N, 4.08; V, 14.84%.

7) Anal. Found: C, 47.17; H, 8.50; N, 3.10; Ir, 13.62; V, 14.23%. Calcd for C₅₆H₁₂₀N₃IrV₄O₁₂: C, 47.25; H, 8.50; N, 2.95; Ir, 13.50; V, 14.31%. IR (Nujol, 1000 - 700 cm⁻¹): 957 (m), 943 (m), 926 (m), 915 (sh), 891 (w), 855 (sh), 827 (s), 802 (s), 736 (m). ¹H NMR (CD₃CN, 360 MHz): δ 3.83 (br, 4), 3.18 (m, 24), 2.48 (br, 4), 1.63 (m, 24), 1.38 (m, 28), 0.97 (m, 36). ¹³C{¹H} NMR (CD₃CN, 75.5 MHz): 59.9 (s, 4), 59.3 (s, 12), 32.8 (s, 4), 24.4 (s, 12), 20.4 (s, 12), 13.9 (s, 12). ⁵¹V NMR (CH₃CN, 78.9 MHz): δ -524.

8) The reflections were collected on a Nicolet P1̄ diffractometer, and the structures were solved using (SHELXTL) "direct methods" techniques.

9) Crystals of compound 1 were obtained by dissolving the compound in *N,N*-dimethylformamide at 45°C, adding diethyl ether to the point of saturation, and cooling the mixture to ambient temperature. Single crystals of [(n-C₄H₉)₄N]₂{[(η-C₈H₁₂)Ir]₂(V₄O₁₂)} (formula weight 1481.50) are at 20 ± 1 °C monoclinic, space group *C*2/c with *a* = 22.243(4), *b* = 18.475(3), *c* = 15.937(3) Å, β = 94.58(2)°, *V* = 6528(2) Å³, *Z* = 4, *d*_{calcd} = 1.51 g·cm⁻³. *R* = 0.045 and *R*_w = 0.056 for 3261 independent absorption-corrected reflections having 2θ_{MoKα} < 48.3° and I > 3σ(I).

10) Crystals of compound 2 were obtained by adding diethyl ether to the reaction mixture without stirring to make a second layer and allowing the mixture to stand for 12 h. Single crystals of [(n-C₄H₉)₄N]₃[(η-C₈H₁₂)Ir(V₄O₁₂)] (formula weight 1423.57) are at 20 ± 1 °C, orthorhombic, space group *Pna*2₁, with *a* = 17.185(3), *b* = 18.165(3), *c* = 22.433(4) Å, *V* = 7003(2) Å³, *Z* = 4, *d*_{calcd} = 1.35 g·cm⁻³. *R* = 0.049 and *R*_w = 0.055 for 3254 independent absorption-corrected reflections having 2θ_{MoKα} < 48.3° and I > 3σ(I).

11) The first number in parentheses following an averaged value of a bond length or angle is the root-mean-square estimated standard deviation of an individual datum. The second and third numbers are the average and maximum deviations from the averaged value, respectively. The fourth number is the number of individual measurements which are included in the averaged value.

12) J. Fuchs, S. Mahjour, and J. Pickardt, *Angew. Chem., Int. Ed. Engl.*, **15**, 374 (1976).

13) P. A. Tucker, *Acta Crystallogr.*, Sect. B, **37**, 1113 (1981).

(Received April 27, 1990)